
INTRODUCT ION
Up to now, recipe management systems have consisted
of the configuration control and upload/download aspects
of recipe management. These functions, although needed,
are woefully inadequate for what has been requested by
fabrication facilities. Additional functions that consider
the equipment condition, equipment capabilities, produc-
tion line loading, scheduling, and processing time are a
few of the items that are required. Furthermore the tight
link between the operation and a single, unique recipe ID
is no longer adequate for the complex equipment on the
production floor. Recipes are more aptly described by the
function the recipe performs for a given process.

WHY FOCUS ON REC IPE MANAGEMENT?
Recipe management is a rarely discussed function.
Why? To begin with, a full-featured recipe manager is
difficult to provide without full factory integration. As
fabs became more integrated, the major function that
was required became recipe upload/download. This
required recipe storage. Recipe storage allowed for
rudimentary configuration control and sign-off. Still, today,
a lot of equipment does not allow recipe upload/download,
recipe standards do not fully exist, those that exist are
not adhered to, and therefore the full benefits of a
recipe manager cannot be realized.

Back to the question: recipes, like other resources
throughout the fab, are required prior to making a process
run. Without the right recipe, the fab loses efficiency via lost
time, rework, or scrapped product. Increasing efficiencies
and throughput is critical in reducing the cost of the
product. To do this, information about the recipe is required.

The Right Recipe at the Right Place
Ensuring that the proper recipe is available for a produc-
tion run prior to the material being delivered to the
equipment is a requirement. Many facilities assume that

the recipe is actually on the equipment prior to dispatching
the lot. Upon the lot being placed on the input port, it may
be determined that the recipe does not exist, has been deacti-
vated, or has been changed, so that the lot cannot be run.
Even worse, the lot is run – possibly destroying the wafers.

SE M I C O N D U C T O R FA B T E C H – 10 th ED I T I O N 47

AB S T R A C T

This article is a discussion of the needs of a
recipe manager in today’s fabs. It enumerates the
high-level requirements for a full-featured recipe

management system. It also describes the interrela-
tionship of the functions, methods of utilization, and the
incorporation of a recipe manager in the overall
manufacturing system.

TODD C. WILLIAMS, Compaq Computer Corporation, Camas, WA, USA

Recipe Management:
A Matter of Efficiency

Function Enables

Store recipe • Recipe distribution
• Configuration control
• Recipe verification

Store checksum • Recipe verification

Configuration control • Control of released recipes
• Change notification
• Modification analysis

Parameter assignment • Processing adjustment
• Range control
• History tracking
• Parameter control

Name resolution • Dynamic choice of recipe
• Equipment optimization

Recipe verification • Recipe existence
• Recipe integrity

Recipe modification • Alert for unauthorized
change

• Automatic configuration
control

Recipe characteristics • Dynamic allocation of recipes
• Scheduling based on varied

equipment configuration

Recipe attributes • Controlled dynamic use of
recipe

• Valid/expiration times

TABLE 1.
RECIPE MANAGEMENT FUNCTIONS

The Travelling-Salesperson Dilemma
There is an old question of how to minimize the cost and
maximize the efficiency of a salesperson on a multiple-city
trip: the lowest travel cost and the least amount of travel
time, giving maximum exposure to the customer. The same
problem exists in the fab. Many lots with dissimilar
processes have to run through the same equipment. How
does one configure the equipment to get the overall best
throughput? The matrix of whether a machine is configured
for pre-metal or post-metal or split down the middle
requires knowledge of not only the material to be processed
but also details about recipe attributes and its availability.

What is in a Name?
Routes are tied to a recipe. What if a recipe has to be changed
to accommodate the equipment’s configuration? The
“one recipe for one process” model fails. What really deter-
mines the recipe to be used is a set of attributes for the
process. These attributes must be matched to the attrib-
utes for the recipe. In this way, a dual-chamber recipe is
equivalent to a quadruple-chamber recipe as long as the
same function is performed. The difference is the speed
at which the process is performed. The scheduling system,
which has a view of the entire fab, makes the decision on
the basis of the overall efficiency of the fab, not the lot.

BAS IC FUNCT IONS
The aforementioned issues must be handled by a full-
featured recipe management system. For ease of
discussion they will be broken into two sections – basic
and advanced functions. In these categories, the major
requirements will be discussed. A short list of functions
is shown in Table 1.

The basic functions for a recipe management system are
the functions present in most systems today – recipe body
storage, configuration control, and parameter assignment.
Let’s spend a few minutes discussing the basic functions.

Recipe Body Storage
Being able to store the body of a recipe is the cornerstone
of recipe management. With the storage of the recipe
body, the recipe manager is the enabler that allows
the computer-integrated manufacturing (CIM) system
to have control over the recipe. Recipes are available for
download or comparison to recipes on equipment.
Recipes may be distributed to equipment other than the
equipment on which they were created. This distribu-
tion may follow well-defined business rules instead of
other, error-prone methods.

The types of business rules that may be enforced depend
on the equipment, the process, and the methodology of
how the equipment will be run. Changes in the recipe
body can be caught and actions taken on that error. These
actions may include:

• always overwriting the recipe with the “recipe
manager” version of the recipe

• overwriting based on equipment type

• initiating an alarm on the equipment for human inter-
vention

• stopping all processing using that recipe until an
engineer has corrected the problem.

More importantly, these actions need to be dynamic
and configurable on the basis of product, route, equip-
ment, tool ID, or some other basis.

The goal is to eliminate the possibility of a recipe being
changed and inadvertently affecting wafers. The recipe
manager needs to ensure that all wafers receive the same
process time after time.

Offline recipe storage provides other benefits, too.
By maintaining proper versioning, engineering has one
more tool for determining if a recipe change has caused
a positive or negative effect on the wafers. Has a change
three versions ago combined with a more recent change
caused a cumulative effect on the yield? Access to the
data online allows this type of analysis.

Configuration Control
Configuration control is a misunderstood process.
Contrary to the popular opinion that configuration
control is a bureaucrat’s dream, it was really born out
of a need to notify everyone of a change and to ensure
that the change being instituted was actually consistent
with the product direction.

Configuration control needs to notify the appro-
priate people of a change and ensure that one change
being made is consistent with another. Much of this process
is based on the way a company implements a configuration
control process. Having an engineering vice president
sign off a change in oxide thickness may not be as
valuable as having an implant engineer approve the change.
Improper implementation of a change control system will
hinder the process rather than enhance it.

Configuration control needs to be dynamic and
allow routeing changes based on the changes made to
the recipe to ensure that the proper parties see the
modification. The recipe manager should allow for
integration with the company’s current configuration
control system.

Not all changes need configuration control. This, once
again, is a site-specific requirement. Parameter value
changes do not need a sign-off (in fact, it is not even
practical). Deactivation of a recipe in most cases does
not need sign-off – production and the engineer need a
quick method of removing a recipe from the process.
Activating a recipe, and changes to film thickness,
implant dose, and ramp time of a recipe need configuration
control. The recipe management system needs to allow
flexibility in this process. The user needs to be able to
quickly and easily select the items that require the
configuration control process to be invoked.

The configuration control system must be able to supply
an electronic signature. The signature will be associated
with each item in the recipe manager that requires
approval (on the basis of the user’s business rules). For
transactions that require that a sign-off be completed,
this signature and type of transaction can be passed to
the configuration control system to confirm that the action
may take place. This action is critical for users that are
going to use modules other than the base modules
supplied with the recipe manager (i.e. an existing equip-
ment maintenance and management system, recipe
body storage system, or parameter override system). By
using the signature, custom features can be added
without compromising the configuration control process.

Parameter Assignment
Almost all processes in the fab need to be “tweaked”.
Traditionally, in automated fabs, this is done by the operator
at the time the process is started. The operator will enter
data on the graphical user interface (GUI) associated with
the equipment. The data is then downloaded to the tool
as part of the recipe or as separate activation to equip-
ment parameters. Some systems save this data for
engineering analysis while others do not. This data
needs to be saved.

Changes to parameters usually come from metrology
operations and are fed to the process that is about to run.
In the case of advanced process control, data may be fed

48 SE M I C O N D U C T O R FA B T E C H – 10 th ED I T I O N

in real time. Operators may enter the data manually or
the data may be automatically entered via a feed-
back/feed-forward mechanism.

This process, often called parameter override, has the
following requirements:

• Associate parameters with a process that can be
overridden.

• Limit the range of values that can be entered.

• Store a default value for the parameter (optionally
allow it to be updated to the last value entered).

• Keep a history of the values entered associated
with the lot processed, for engineering analysis.

ADVANCED FUNCT IONS
Beyond the basic functions provided by a recipe manager,
newer, more advanced requirements arise when one
wishes to fully optimize the line. The recipe manager needs
functionality to enable many diverse actions in the fab.
Data from the recipe manager needs to be used by
schedulers, planners, dispatchers, and equipment mainte-
nance systems to ensure the proper utilization of the fab.
To do this, a variety of advanced features are required.

Name Resolution
Most manufacturing execution systems (MESs) require
that a single-recipe ID be assigned to a process. Although
the method of assigning the recipe to the route varies
widely, there is a one-to-one relationship. What happens
when a piece of equipment needs a different recipe? What
if the equipment is only going to run one chamber for
a process instead of two and a different recipe is
required to do this? Solutions range from copying one
recipe to another keeping the name the same, to custom
modules and “intelligent naming” schemes.

The requirement being fulfilled is “name resolu-
tion”. In name resolution, the type of process being done
and the present conditions in the fab are used to deter-
mine the proper recipe to use.

Through name resolution the result of the process is
described (e.g. 50 angstrom thermal oxide). The recipe
manager then returns a list of recipes and conditions that
can perform that process (Table 2). Although the best
examples are provided by multichambered equipment
(see below), other situations may require this. In the case
illustrated in Table 2, equipment from different manufac-
turers can be used to grow the same oxide. The naming
rules on these tools are not the same; therefore name resolu-
tion is needed to determine the available recipes.

Recipe Attributes
Recipe attributes describe how and when a recipe is to
be used. These attributes range from the version number
to recipe expiration times.

Each recipe must have a set of attributes that describe
it. Although some of these attributes are common from
site to site (e.g. version number), other attributes will
be site-specific and the recipe manager will require
user-defined fields to be added and maintained. These
attributes will be used in the recipe selection process and
in name resolution. Some examples of attributes are:

• version number

• recipe expiration date

• recipe activation date

• subrecipe ID

• subrecipe ID list

• recipe type (i.e. recipe list or process recipe)

In addition, various recipe styles must be accom-
modated. Beside the recipe being human-readable or not,
it must be possible to describe recipes as linked or
non-linked, recipe lists, or other types of recipes that equip-
ment manufacturers have introduced.

Equipment Capability
One of the biggest uses of name resolution is based on
equipment capability. Equipment, especially multi-
chambered equipment, takes on the look and feel of
different pieces of equipment throughout the processing
day. Chambers can malfunction and go offline, or the
equipment may be “wounded” but still capable of
processing material and keeping a level of production
running until a more convenient time becomes available
for maintaining the equipment.

One scenario is that it may benefit production to split
the functionality of a tool. Some processes must be
isolated. For example, pre- and post-metallization processes
cannot be mixed through a piece of equipment. However,
by isolating chambers, half of the equipment may be pre-
metal while the other half is post-metal. This procedure gives
production more flexibility in scheduling the floor.

An example is in order. Assume there are three
identical pieces of equipment that are configured differ-
ently. CVDMT001, CVDMT002 and CVDMT003 are
the same make and model of equipment. The equipment
can only run aluminium on some of the chambers.
CVDMT001 can run aluminium on one or three
chambers while CVDMT002 can only run on one
chamber (Table 3). There are sets of recipes that can run
on various equipment configurations. In this example,
there are two recipes: DEPAL2W can deposit aluminium

SE M I C O N D U C T O R FA B T E C H – 10 th ED I T I O N 49

Equipment ID Recipe ID Process

FRN-KOK-001 50GOX 50 angstrom thermal oxide

FRN-TEL-001 GateOxide 50 angstrom thermal oxide

TABLE 2.
EXAMPLE OF RECIPE NAME RESOLUTION

Equipment ID Configuration option 1 Configuration option 2

CVDMT001 OneChamber ThreeChamber

CVDMT002 OneChamber 0

CVDMT003 TwoChamber 0

Recipe ID Equipment option 1 Equipment option 2

DEPAL2W TwoChamber ThreeChamber

DEPAL1W OneChamber N/A

TABLE 3.
EXAMPLE OF EQUIPMENT CONFIGURATION OPTIONS

using two chambers and DEPAL1W can deposit using
only one chamber. Therefore, DEPAL2W can run on
CVDMT003 and CVDMT001 since they allow two- and
three-chamber processes, respectively.

Recipe Availability
Recipe availability is the next piece of data that is
critical. Yes, in an ideal world the recipes are all in the
repository and can be downloaded to the equipment. The
odds of the perfect world appearing in a semicon-
ductor fab are, however, a little slim. Two primary
conditions exist to mess up our world – the equip-
ment cannot support up/download or the recipe on the
equipment has been changed.

As we will discuss later, one of the major hindrances
is that the equipment interface from the supplier may
not support the recipe upload/download function. At
this point, the recipe manager may “believe” the recipe
is on the equipment, when in reality someone has
deleted or renamed the recipe. Therefore, the recipe
manager notifies the requesting component of the CIM
system that the recipe is on the equipment. Not until the
lot is placed on the input port does the reject occur. Valuable
production time has been wasted.

To solve this problem the recipe manager must be able
to query the tool to determine whether the recipe exists
on the equipment. This obviously takes more than
simply setting up the recipe manager to handle the
request – the cell controller must also be modified.

Furthermore, the implementation in the recipe
manager must be done properly. The problem is that this
function when improperly implemented can create a severe
overload on cell-level controllers. Without care and
safeguards put in place, scenarios can be developed where
hundreds or thousands of calls are submitted to cell
controllers asking for recipe existence, slowing down the
entire system. Therefore, safeguards must be placed in
the recipe manager to generate an alert or prevent this
from happening. The recipe manager must have this option
configurable and a process must watch to ensure that
“wildcard” requests are stopped.

The second issue is one of company policy. What does
one do when a recipe has been changed on a piece of
equipment and the recipe manager is not aware of it?
The configuration control process has been circumvented.
There are three basic options – do nothing, always
download the “official” version, and raise an alarm for
the machine.

If changes to recipes on equipment are to be
monitored, then, there are a variety of ways to meet this
requirement. One common way is to store a checksum
value in the recipe manager, and upload and recalculate
the checksum on the current recipe. A difference gener-
ates an error.

The next issue is what to do with the error. This could
be as simple as to alert the notification system or
could be as drastic as raising an alarm that will deacti-
vate the recipe and disallowing its use on any product.
Although the action to be taken is a business rule, the
recipe manager should support user-defined mechanisms
to allow the disabling of a recipe for a piece of equip-
ment or for any use.

Recipe Modification Alarms
To help circumvent last-minute notifications of changes
to a recipe, the recipe manager must be able to react to
alarms for equipment whose recipes have changed.
SEMI E-42-compliant systems that support recipe
change alarm are required. In addition, equipment
interfaces must be kept up and running to support the

trapping of the alarm. Once this alarm is trapped, it may
be handled in the same way as discussed earlier. The advan-
tage is that the reaction time is lengthened, hopefully
allowing for a less severe action to take place.

Offline Recipe-Editing Support
With the goal of the recipe manager being to optimize
fab utilization, it must support offline recipe editing. Various
companies provide offline recipe editing. This frees the
floor equipment from being used for the tedious job of
writing and initial testing of the recipe. Offline recipe editing
is its own subject and will not be covered in detail here.

Integration Capabilities
Integration is a complete subject in its own right.
However, certain issues need to be addressed in a
recipe manager as well as for any component in the CIM
system. An interface requires support for a variety of
communication methods. Fortunately, the list of
frequently used tools for integration is relatively small
for the semiconductor industry. Although standards
are ultimately the answer, additional layers of code
should be in place to assist in the integration of the system.
Any component should support both COM and CORBA
as well as other, more “raw” communication methods
as TIBCO’s Rendezvous, BEA Systems’ BMQ (formally
DECmessageQ), and Microsoft’s MSMQ. Support for
interfacing with these methods will reduce the task of
maintaining the interface or the work required in a poten-
tial bus migration in the future.

In addition, all components should have the ability
to map data elements. Mapping data elements is simply
a mechanism in the component interface that allows one
or more fields from outside the component to be
mapped to one or more fields inside the component.
Although this function is available in some middle-
ware software (e.g. Compaq’s BusinessBus or Crossworlds),
the rudimentary functionality should be included in the
component interface. Alternatively, bundling one of
these third-party products is an acceptable option.

USAGE O F THE SYSTEM
The recipe manager is one more tool in the CIM
engineer’s tool bag. It is an enabler. Properly designed,
with a generic bus interface, it should provide some “out
of the box” functionality. However, as with any part of
a greater CIM system, it must be integrated. This means
that other components, such as the cell controllers, sched-
ulers, and dispatchers, need some level of configuration
or customization to use these features.

The recipe manager, as with all CIM components,
should have mechanisms to minimize the impact of imple-
mentation. Features such as bus-independent interfaces
and data element mapping can help make this process
much easier.

Schedulers and Dispatchers
As mentioned earlier, the goal of a recipe manager
must be to improve efficiency. One way to do this is to
supply the schedulers and dispatchers with data on
the present capabilities on the fab floor. The type of data
that should be supplied is:

• recipe availability with respect to equipment capabil-
ities

• recipe availability with respect to equipment
configuration

• recipe run times

• all possible recipes for a process, on the basis of the
available equipment and the equipment’s configuration.

50 SE M I C O N D U C T O R FA B T E C H – 10 th ED I T I O N

This type of data allows optimization of the floor by
allowing complex algorithms to be used that look at various
equipment configurations, the length of time for an equip-
ment configuration changeover, and the time savings to
production. From this result, decisions can be made that
will allow for optimizations of the fab floor.

Having data like this will allow a system to select the optimal
equipment configuration or run sequence when there are
three lots of product “A” and one lot of product “B”. Each
of these lots requires a given piece of equipment. They have
multiple recipes depending on the number of chambers avail-
able, and their run time depends on the number of chambers
used. This then creates a situation where a decision needs
to be made, mixed with other line priorities and the
changeover time on the equipment. This, in conjunction with
hundreds of other lots on the line, requires in-depth knowl-
edge of the line and serious computing resources.

Advanced Process Control
The use of advanced process control (APC) requires tools
to adjust and control processes to accommodate wafer-
to-wafer fluctuations on the line. Recipes and recipe
management systems need to be able to accommodate
APC systems to allow for and monitor adjustments
required by the process. Presently, most parameter
data is input by operators prior to the production run.
In future fabs, input directly from the APC system will
be required. Controls to ensure the data can be overridden
and is within limits will be needed not only in the APC
system but also in the recipe management system.

Cell Controllers
Cell controllers, the part of the CIM software that
interfaces with the equipment controller, will be the heaviest
user of a recipe management system. Current recipes,
validation checks, parameters, and up/download all
require the recipe management system.

REQU IRED EXTERNAL FUNCT IONAL I TY

Equipment
Still the biggest issue in the way of a proper implementation
of a recipe manager is the functionality provided by the
equipment manufacturer in the equipment interface.

The cornerstone of functionality is recipe upload/download
functionality. This must be implemented on most controllers
on the equipment and on the cell controller. However, other
items are also required to implement the features discussed.
Alarms from the equipment when recipes are modified, equip-
ment capability is changed, or the configuration is altered
are required. Being able to query the equipment for its state,
a recipe’s state, or what the tool is processing at any
point in time must be implemented in all equipment
interfaces. These interfaces must be consistent, standard,
fully documented, well tested, and of high quality. Without
this, the tasks that are discussed in this article are difficult,
if not impossible, to perform.

ENABL ING OTHER SYSTEMS
The recipe manager is just a small part of the overall CIM
system. It enables certain functionality, but cannot stand
alone. The most important accompanying system is the
equipment maintenance and management system (EMMS).

Equipment Maintenance and Management Systems
Complete usage of a recipe manager requires a tight link with
an EMMS. In the absence of the EMMS, basic, rudimentary
functions should be provided by the recipe manager. These
functions are required to give the general state of the
equipment and chambers. The ability to determine the

capabilities and configuration of the equipment is required
in order to determine what recipes can be used for a
process to ensure proper utilization of factory resources. The
information as to whether a piece of equipment is offline,
wounded, or has multiple configurations, joined with a strong
recipe manager functionality, gives the factory systems
greater flexibility in ensuring high utilization.

CONCLUS ION
To decrease the production costs, fabs must either fit more
die on a wafer or decrease their cycle time.

To increase the number of die, one must shrink the
product or make the wafer larger. In making the wafer
larger, automated handling systems are required to get
the wafers to the equipment. Prior to scheduling the material
to a piece of equipment, all the resources must be avail-
able. The recipe manager is the component that supplies
the required data for the recipes on the equipment.

Another method to improve efficiency is to decrease
cycle time. This may be done by improving resource avail-
ability, reducing rework, and reducing scrap.

Reducing wasted time due to improperly configured
equipment or inadequate resources available for
processing requires systems that are more sophisti-
cated. For the recipe management system, this requires
interfacing with schedulers and dispatchers to supply
the data (more data than is generally available today)
to these systems. The relationship of the equipment
configuration to the recipe is critical in this process.

Recipe validation processes (configuration control,
checksum verification, parameter override, etc.) are
required to ensure that the proper processing of the wafers
is done. Without the functionality described here, these
processes would be impossible.

A full-featured recipe manager is one part of a
complete CIM system. The functionality must be present
in order to meet the next generation of fab automation
– the next generation that will be required for 300 mm.

ABOUT THE AUTHOR
Todd C. Williams is a Solution Architect for COMPAQ (previ-

ously Digital) and has worked on CIM installations at TSMC,

Winbond, WaferTech, MASCA, and Komatsu Silicon America.

Presently, Mr Williams is working in the Industry Solutions Divi-

sion of COMPAQ designing solution sets for the semiconductor

industry. His responsibilities include the development of an MES-

independent recipe management system.

I F Y O U H AV E A N Y E N Q U I R I E S R E G A R D I N G T H E
C O N T E N T O F T H I S A RT I C L E , P L E A S E C O N TA C T:
Todd C. Williams

Compaq Computer Corporation

833 NW 24th Avenue

Camas

WA 98607-9365

USA

Tel: +1 (360) 834-7361

Fax: +1 (360) 834-0574

E-mail: todd.c.williams@compaq.com

[Reader Ref. 6]

SE M I C O N D U C T O R FA B T E C H – 10 th ED I T I O N 51

